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. . SUMMARY

is represented by a vor-
at the blade point.

The field for “curved blades
tex series with a vortex removed
Further, an example of calculation of a curved-blade from
this series is given, whereby the necessary accuracy re-
quired of the different methods in practice is shown ac-
oording to the case considered.

INTRODUCTION

In the new theory of impeller wheels, airfoil lattices
(blade grids) have an important place (see reference l,p.219,
from which figs. 1 through 3 are taken); that is, for1 circularly arranged blades (centrifugal pump, fig. 1) Or

for helical sections of propeller wheels (propeller pumps,
Kaplan turbines, fig. 2). This gives directly a straight
airfoil lattice (fig. 3) and the former can he reduced to
one by a simple conformal transformation (~ = in Z).

The size and shape of the blade grid obtained for
fixed working conditions can be secured from the exten-
sive data for single airfoils, If the following are con-
sidered: If an airfoil iS removed from out of a grid,
the streamlines of the flow at the point are already
curved through the influence of the ad~acent blades. If
one puts a thin airfoil at this point, the shape,(profile)
Of which colncidee exactly with a -streamline, obviouslY,
little force is exerted on such ah-lade, as it certainly
does not alter the shape of the streamline and it thus
exerts little force on the fluid. A force occurs if the*.,
afrfdi’”l-dlfferw .from the- shape-.ofthe-s.trea.mlige.~ an$ tk?
force and distribution of it depend essentially on the
deviation. One can only approximately assume that the

*tfDiagramme zur Berechnung von ‘Fltigelreihen. 1’, Ingenieur-
, Archiv, Bd. II, Heft 3, Sept, 193~, pp. 359-371.
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action of two blades is equal if their’ deviation from the
undisturbed streamlines is equal; that is, the action for
use, of this rule does not deperid greatly on the initial
form of the streamlines. *

It can only be approximately assumed that the action
of two blades is equal if their deviation from the undis-
turbed stream is equal; that is, for this rule the action
does not greatly depend on the form of the entering
streamlines. The practice for a single blade can thus be
used if this shape is altered t~ fit the basic flow.
Moreover, as previously seen, the basic flow is obtained
at the point by removing a blade, but without simultane-
ously changing the circulation distribution of the other’
blades.

If the blade chord is not great with respect to the
spacing between blades, the resulting flow can be com-
puted by replacing the blades with vortices of equal cir-
culation. The mathematical form representing such a
field by a vortex series is well known (reference 1, p.
238). The formula is inconvenient for practical use,
otherwise we should break the field into a series fOr
which a vortex is missing. We must therefore remove a
vortex from the field, whence we get further difficulty.
In the region of the vortex point concerned, that is, the
region in which we are m~inly interested, the function
approaches infinity.

These troublesome calculations must not always be
repeated, as the distribution of the important values in
the region in question is given in figures 5 to 8. Be-
cause of symmetry it is sufficient to give only one quad-
rant . One must only notice the sign to find the quadrant.
To facilitate their use a small supplementary drawing iS
given in the top Fight-hand corner. of each plot, which
gives information as to the sign of the single quadrant.
Figure 4 shows the arrangement of the vortices with the
essential dimensions and s~mb’ols.

*Exact agreement with these assumptions is not obtained.
Besides, appreciable variation occurs if the flOw in
which the blade is placed is accelerated or decelerated.

“\

(Grids with pressure rise or fall, pumps or turbines. )
(See reference 2.,) Also for strongly curved flcws
(vanes with large change of direction) are variations tO ‘
be expected. If one is sufficiently familiar with ii,
these variations are immaterial to the satisfactory ap- .

plication of the given diagrams.

—



NACA Technical Memorandum No. 1022 3

!l?hevortex spacing is a,m the circulation of each
vortex r. The diagram uses the dimensionless ratios

~ x/a, y~a,

For the diagrams, vortex series extending farther

than ~ on one side and r
2a –z

on the other parallel to
.

the grid are taken as basis. The component normal to the
grid is zero. In the practical case the grid may, in
general, have any arbitrary inflow cl, having components
U1 and V. (fig. 10). For example, the blade series ~

causes a deflection of the flow so that at unit distance
.

behind the grid the velocity C2 has components U2 and

Vo. (On the ?)asis of continuity the component V. cannot

change. ) The generalized flow is obtained from the one
described through superposition of a parallel flow with

U1 + U2
velocity CO* the components of which are urn =

2

and Vo. Tc obtain the desired deflection, the change in

U1 and U2, the circulation about each blade must be
considered.

r= (U1 - u2) a (1)

‘ The velocity at any point then has, if the corre-
sponding point in the diagram has the components u* = u $

and v* = ~a
r’

the components

ul + U2Ut = + (UI -U2) U*
2

cVr~= V~ + (UI - Ua) V.*
/ ‘

The pressure rise (negative = pressure fall) is ~
1 ‘known (reference 1,- p. 231).

(2)

..-

! I
$2, ,. , ..— . -— ... .-.. ... .. -.

Y@
/
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Pa - Pi’= :.(u,~ -u2a) - p’ (3)
“.

~ofi.c.

where pt is the loss in the lattice. The ~eu~ ex-
erted by a blade has the components

F’x = p V. (UI - ua)a

‘Y = (pa - pl)a
1

(4)

To explain the use of the plots, we will only deter-
mine the proper shape and placing of the blades in a
series, when the series must produce a given- effect. We
proceed as follows: We do not at first consider the in-
fluence of adjacent blades, which is accurate if the
blade chord is very small compared to the grid spacing.
(lst approximation). We then compute the change by means
of the charts considering the influence of the neighboring
blades. We next imagine that the neighboring blades are
replaced by a single line vortex, as in the diagrams.
This gives satisfactory results for most practical cases
(2d approximation). We can immediately drop this simpli-
fied approach and consider the chordwise distribution of

.

circulation along the blade, where we can also use the
diagrams (3d approximation).

CALCULATION OF BLADES WITHOUT CONSIDERING THE
,.

DISZTHIBANCE DUE TO THE ADJACENT BLADES

The spacing a is, in general, obtained from con-
siderations of construction. The inflow velocity is given
by its components v. and The blade series will

.
U1.

increase the velocity UI to U2 (turbine blades). In-

stead of the velocity change the force in the grid direc-
tion (tangential force) *X can be used. From the gov-
erning relation (ua - Ul) can be easily computed. (The

pressure drop (PI - P2) or the force perpendicular to,the
grid is required; thus the pressure loss p’ must be es-
timated next on the basis of corrected atrfoil data.)
The circulation r is given by equation (1) from (ua - til).

——— —___ ———— ...__________________
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, In aeronautical literature are given values of ~a

~ (lift coefficient) and ew (-drag coefficie.n$.) depending
j on the angle of attack u for wing profiles. Besides
,,1

‘wthe so-called glide apgle, the ratio ~ = E play8 a
a

further part in the lees pi, or the machine efficiency.
The circulation r is related to the lift coefficient

‘a of a blade in the lattice by

(5)

where t is the blade chord in the direction of flow.
The hypothesis for this formuia iS that the velocity is ‘
not essentially changed in the region from the leading
edge to the trailing edge of the blade. If this condi-
tion is not satisfied, the blade chord must be corrected,
whereupon we return to figures 11 to 13. We will now
select a suitable airfoil from those tested, for example,

. a plate with small camber, c-am-b=== 0.05 (reference 3,
chord

P. 407.* Figure 9 gives test values for this airfoil.

In case cavitation or other considerations do not
dictate a very low value of ca* we choose ‘a to give

a satisfactory small value of the glide angle (1OW drag).
In this case** for the airfoil chosen: Ca = 0.7 and

a= 3°.

With this lift coefficient, and the magnitudes Of
U1 and U2 given by the problem,
fixed by equations (1) and (5).

_ ~ 2(U1 - u~)t

a
>

Ca co

the necessary chord is

* The values given there-must be corrected to infinite
aspect ratio. (Formulas given in Htitte, p. 402.)

‘*For pressure drop through the grid, one can probably
pick.a higher value of Ca for this case. (K.
Christian, see footnote p. 2 of this report. )

f-
(1,.,,,,,.. ,.-,.,-!-. .

. II
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?

For example, ‘from t-he problem w-e require V. = 2ul .aad

U2 = 3U3 thus ,
, ... .

r U1 + U2—=u2--~1 r= 2;1 ‘m = =2U1=;
a 2

~ 1- (7)

and thereby

L. 2X2

0.7 X 2.82
= 2.03

a
(8)

If ~ is very small, we can consider the flow in the
a

region of the blades as uniform (lst approximation), and

111 + ua
this flow has two components urn = and Vo.

2

The ,deflection velocity for the blades considered at the
zero point of the diagram leave only the superimposed
parallel flow. We must therefore arr,ange the blades with
the proper angle of attack- relative to this flow. In our
example the superimposed flow has the components urn = 2U1

and To = 2U1, thus its direction forms the angle

B = tan-L Q = 45° “with the grid direction. The blade
‘m

‘chord has an angle of attack of 3° with this direction;
it thus makes an angle with the grid direction of
8 = $ -a= 420. The arrangement of the blades is shown
in figure 10 according to the calculations. But it is
intentionally emphasized that for the example the assump- I
tion that the.blade must be small compared to the grid
spacing, i$ not satisfactorily ‘fulfilled, and for that
reason the arrangement shown in figure 10 is not satis-
factory.

.

..

.

.. . ..
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BLADES BY VORTICES

Calculations based on Deflection Vel-oc~-ties “ “-” ‘

J If the blade is not small compared” to. the grid spac-
ing, the tail thus projects noticeably into the disturbed
region of the adjacent blade. The flow direction there
is different from that in the middle and we must adjust
the blade curvature for this changed relation. For this
calculation we can, in gene”ral., replace the adjacent air-
foils by separate vertices (2d approximation). Since the
actuak blade occupies .considerable #pacepwe must fix a
place in the blade to put the replacing vortex. It has
been shown that the least error is made if the vortex is.
placed at the so-called center of pressure, that is, the
point at which the resultant force cuts the blade chord.
It lies, in general, at-a distance el between 0.25t and

0.5t from the leading edge. The moment coefficient cm

about ..the leading edge is usually given in the reports of
airfoil researcli. (fig, 9).

.
Whence one can calculate

S1 Cm
-=—
t Ga

(9)

For our example .Ca = 0,7 Gm = ~.29, thus
*

s 0.29
..

— = 0.41.
‘= 0.70t

In figure 10 the x-axis is drawn through

the ~rofile center ;f pressure 0.41t from the leading edge.
The deflection ~elo~ities can be easily found for each
point of the blade by use of diagrams 6 to 8. If the de-
flection is not very large,it is enough, to f-ind the rela-
tion to correct the blade at the leading ~L trailing
edges, especially the latter. As the deflection becomes
less, the position of the leading and trailing edges, com-
puted from the de.i’lection, approaches those for the basic
undisturbed etream. For\ a considerable displacement Of
the edges, it can be obtained by repeated ,,calculations,
but , in general, -this wi~l not be greatly changed from
the assumed position.

In o-ur example the e~ge~ for the undisturbed flow
lie on a straight line making an angle 6 = 42°. .The
leading edge is removed from the zero point a distance .

. .
s

i..
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S1 = o,41t = 0.89a (t = 2.03a- from equation (7)), arid the

trailing edge a distance S2 = 0.69t = 1.2~a.

The angular deviation of the flow follows from the
deflection velocities u and v (charts 6 and 7) from
the adjacent vortices. According to figure 11

A$ ~ tan A$ . v Cos $ - u sin P
co + u cos p+ v sin @

(lo)

It should be noticed that u and v have different
signs in the different quadrants, but P must always be
less than 180°. For the leading edge of our example u.
and v -~~snegative. In many cases the deflection corn- “
ponent u cos e+ v sin $<eco. In which case the cal-

culations can be simplified if the deflection is not cal-
culated for the blade itself, but’ rather for the point
on the undisturbed streamline co through the zero point

making an angle @ with the x-axis (fig. 10). This de-
viation component v cos p - u sin p is identical with
the component Wn given in chart 8, and we get

A$ ‘n:*— (11)
co

The positive sign applies to the entrance distance y>o
and the negative sign to the e~it y<o. F9r our example
we read from the chart (B = 45 , S1 = 0.83a) Wn .= -0.14 ~ I

and for the trailing edge (p = 45°, S2 = 1.19a) wn = 0.22 ~“

Since co = 1.41 ~ (see equation(7)), we get for the cor-

rection angle,

-1

for the leading edge A@ = ,

1

7#

(12)
for the trailing edge A$ u .7°

We must consider that the blade does not give an appreci-
able change in the velocity co. For a given wing the

circulation is proportional to the velocity, To maintain
constant circ.ulat”ion we must therefore reduce this

—— ——.. .. .—- —-——,—, . .. ...-.



i

‘$
-t
:..~

i

[ .
i’!
1, NACA Technical Memorandum No. 1022 9

1$
\

~?& velocity in inverse ratio to the blade speed and similarly
I~,

1

m% .—..
The~e.lso,c.i~~_at the lead-incr-e-as&“Yt-for =1-owe-r=w.peeds..-.=....,)

‘1 ing edge in the example, terms in equation” (E), ‘ ‘--

CE = 0.74, .CO,.

and at the’ trailing edge.

CA = 1.26 Co

\

1 If we now assume that the velocity varies approximately
linearly from the zero point to the edges, then the mean

co + CE Co + CA
velocities for these distances are

2
or

2
~.
i ,, and from the original equations, these velocity changes
r require changes in length of the separate blade elements
4,; at the inlet or exit edges of the distance S1 or Sa,

respectively, from the zero point. Where

2 c~
Sll —= 1.15= S1 co + cE S1 = 0.96a

1

(13)
2 co

eta = Sa = 0.885 Sa = 1.05a
co + cA

,>.
k

With these corrections we get the changes in the airfoil
‘5 shown in figure 11, the proportional change in the tail*
@ point being clearly shown. Practically it is almost

“4 meaningless compared to the change in angle of the lead-
*’i ing and trailing edges.
~1 It is noticed besides that for

I

this change only the change in total ohord of the airfoil.3,
;i; has effect. If, therefore,
‘$

as in the above case, the end
points are displaced equally, there is scarcely any dif-
ference. To be sure this applies only when the streamline

)1$ along which the profile lies is in some degree straight,,

k

jl 3’or strongly curved s~reamlines (large velocity change
in the lattice), the displacement of the profile itself p

il’
plays an .i-mpor>tantpart,

.>,
“1J Calculation by Conformal Transformation

If, as in our example, the simple formula (11) does
not satisfactorily calculate the necessary bend in the

/-
.. .. .. ...... — ,,,. -- ..,.- . .———- - .
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blade, it is then simple and accurate to obtain the curve
by means of chart 5, In the following way (figs. 12 and
13).

If we draw the streamlines of the undisturbed flow
superimposed on the deflected flow (fig. 5) to an equal
scale, then streamlines of the undisturbed flow are
straight lines, for our example lines at 450 to the x-axis.

rSince co = 1.41 -, thus choosing the distance between
a

these streamlines and numbering them so that streamline
“zero” goes through the zero point and streamline ‘one”

is displaced a distance ~ figure 12 shows for the
.

example the streamlines for which the stream function in-
creases by 0.1. The superposition of both flows, the un-
disturbed Co (fig. 12, dotted) and the deflection flow

(fig, 12, thin solid) can thus be composed by known meth-
ods to get the resultant flow (fig. 12, solid). Similarly
the potential lines can be obtained. dince, in general,
only a few points need be taken, it is simple to determine
them by vector addition,

At the top of figure 13 the blade is shown for the
undisturbed flow with its streamline and potential-line
grid. If because of the adjacent blades t-he grid is dis-
torted (fig. 13, bottom), the corresponding point of the
blade, that is, leading or trailing edge lies at the
point having the same potential and stream function (con-
formal transformation).

INF&UENCE 03’ FINITE ADJACENT BLADE DIMENSIONS

.

For these calculations we have calculated the influ-
ence of the deflection resulting from replacing the ad-
jacent blades by a single vortex placed at the center of
pressure of the blade. In most cases this approximation
is completely satisfactory. Now if the blade chord is
large compared to the spacing a cos #3, it should be
noted that the space distribution of circulation in the
adjacent blades must be ‘Considered. ‘The vortex distribu-
tion along a blade chord is at least approximately known
from lift and pressure distribution. Figure 14 shows the
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(&_$ft d~s-tribution or the identical circulation distribu---- * ~,-!. .* ... .a_- —.**._.=....a.a.,=—-m--
M’ about our-profile.

‘ion as)
It the profile is “~istorted

by conformal transformation, each part is itse-lf deformed.
The circul~,tion about an element of the -profile remains
unchanged. Therefore, the circulation for each unit
length must diminish proportionally to the stretching and
conversely, as the profile is deformed. Because of this
displacement of the circulation, the center of pressure
is itself somewhat shifted. The computations can then
be carried out by shading the entire profile; the change,
however, is relatively unimportant as shown by figure 17
(thin broken and solid lines). On the basis of the as-
sumed circulation distribution given in figure 14, the
new distribution and center of pressure given by the dis-
tortion is shown in figure 15. We proceed on the basis
that the concentrated vortex at the center of pressure
can be replaced by an appropriate vortex at each element
on the blade. The influence for the vortex series at
each element can then be separated and summed. Instead
of working with finite elements, we can change tO the

differential ds, for which the circulation is
~r
~ ds

and find the total deviation by integration along the
chord. The latter method will be used in the example.

There is, in general, only a very small correction
to the calculations carried out for the concentrated
vortex. It is thus almost completely satisfactory to
compute only the correction for the leadin,g and trailing
edges of the profile obtained from equations (9) and (13).
TO Illustrate the method for obtaining the calculations
at the trailing edge, we choose about 4 points for the
blade (a, b, c, d, fig. 15) and~etermine from aharts 6
and 7 the effect that a vortex series, of unit circula-
tion at this point, has for the time being on the veloc-
ity at the trailing edge. If the point has coordinates
~ and ~ with respect to the sero point of the airfo$l
ik question, and the trailing edge, the coordinates x, y,
we thus find from our chart the disturbance due the v,or-

tex series at the point x~~ X&L (fig. 16). We thue
a

obtain the two components u and v of the distm~bance
v~locity at the trailing edge of the -blade, (fig. 15,
curve Eu for the u component and Ev for the v

,,.
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multiplying the valtie of the distribution
influence lines, we thus get two curves
deviat%on due the distributed vortex at

the blade point (fig. 15 ~ t and E ~~). The
~bs? vhsr

total deflection at the trailing edge of the blade dis-
tributed vortex is obtained lIy, planimetering the curves,

> ,.
/“

u= 0.34 :
,,

v= 0.14 :

The concentrated vortex at the center of pressure gives
from charts 6 and 7,

For the last valuesequation (9) gives for the angular
deflection,

(14)

as in figure 13. On the basis of the distributed vortex
we get

Ap =
u sin 13- v Cos p

=“ #
(15)

Co + u cos p + v sin @

We must therefore, for the vortex distributed along the
blade chord, consider an increase in the ~xit angle of

A$ - A@l = - 4+0+ 6$0= l$”
.

In general this small angular difference will be given
with sufficient accuracy by the following approximate
equation

.—
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The disturbance component in t-he small direction co for

the concentrated vortex is

u’ cos @ + Vt sin ~ = 0.29 co

and for the distributed vortex

u cos $ + v sin B = 0.24 co

(17)

We must therefore displace outward the trailing edge In
the direction co from that given by equation (13) by a

distance

ASA = 0.02a (18)

The corresponding calculation for the leading edge
gives a change in angle of

LB - ~o
Apt = -4 (19)

,.

and a displacement from the zero point of a distance

As~ = 00025a (20)

The profile with these changes iS shown in figure 17.
For comparison the profile from the assumed concentrated
vortex is shown in thin lines and the profile for changed
center of pressure due to distribution is shown in thin
dotted lines. Thus the effect of distribution is seen to

be fairly unimportant.

The example was intentionally chosen so the various
influences had discernible effect for the various practi-
cable applications illustrated %y the diagrams. In general,
it is soon obvious which method must be used to obtain the
profile with sufficient accuracy. Excessive accuracy for
many cases has little sense as the profile properties for
strongly curved streams and especially for large pressure
drop or $ncrease through grid are themselves not accurate.
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p. 2, K. Christian.) In many cases a
correction from e’quation (11) is suffi-

ciently aocurate.

The curved blade can naturally be obtained if the
effect of a blad”e grid of given shape is estimated. The ‘
deviation velocity is obtained, from an estimated cir-
culation about the blade, from the shape and angle of
attack of the blades in an undisturbed flow. By repeat- ‘
ing these calculations for the circulation, agreement
with the @!esired value can be quickly obttiined.

Translation by J. W. McBride,
Massachusetts Institute of
Technology.
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Figure 9.- Lift,drag,
and moment

of an arc shaped, cam-
bered plate of infinite
aspect ratio.

u.,

Figure 10.- Form and setting of air-
foils in first approxima-

tion(taking no account of the effect
of neighboring airfoils).

Figure 11.- Effect of dis-
turbance veloc-

ities on the profile shape
(second approximation). Light
line shows profile of first
approximation.

Figure

flow (thin lines) on
turbed flow (dotted lines)

?
ives the disturbed
heavy lines).
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Figure 14,- Approxlmatedistributionof the
circulationover the airfoil in
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undisturbedflow.
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Figure 15.- Distiibutionof circulation
over disturbed

I its effect on the trailing
airfoil and
edge.

Figure 16.- Position of vortex at
ing edge of airfoil.

Figure 17.- Profile shape with vortex
distributionover the air-

foil taken into account (third approx.).
Thin line shows profile of second approx.
(accordingto Fig. 13) for comparison.
Dotted line shows position of profile af-
ter displacementdue to displacementof
center of gravity.
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